void TrigThreading(float BaseSpeedRPS)
{

register SPINDLE *S=&Spindle;

if (BaseSpeedRPS < MIN RPS) BaseSpeedRPS = MIN RPS;

S->InvBaseSpeedRPS = 1.0f/BaseSpeedRPS;
S->InvBaseSpeedRPSK1 S->InvBaseSpeedRPS * (1.0 - S->K);

CSO_t = CSO_TimeBase = CSO_TimeBaseDelta = S->LastCSTime = 0.0;
CoordSystem0 = LastCoordSystemO;

// compute where to start
S->StartPosition = (int) (S->Position) + 2;

// Initialize the Filter to the current unfiltered without any Lead
S->AdjTimeFilt = (S->Position - S->StartPosition) * S->InvBaseSpeedRPS;

// Activate last after everything is set up
S->ThreadingActive = TRUE;

6364 0000169c _TrigThreading:
6365 P et PP TP
*
6366 0000169c 0©73CD4F4 STW .D2T1 Al14,*SP--(24) 5 |2734]
6367 000016a0 O5BC62F6 STW .D2T2 B11, *+SP(12) 5 2734]
6368 000016a4 063C82F6 STW .D2T2 B12,*+SP(16) 5 |2734]
6369 000016a8 O6BCA2F6 STW .D2T2 B13, *+SP(20) 5 2734]
6370
6371 000Ol6ac ©70C1059 MV .L1X B3,A14 5 2734]
6372 000016b0 ©53C42F6 || STW .D2T2 B10, *+SP(8) 5 |2734]
6373
6374 CDW$294 .dwtag DW_TAG_formal_parameter, DW_AT_name("BaseSpeedRPS")
6375 .dwattr CDW$294, DW_AT_TI_symbol_name("_BaseSpeedRPS")
6376 .dwattr CDW$294, DW_AT_type (*$CDWT$16)
6377 .dwattr CDW$294, DW_AT_location[DW_OP_reg4]
6378
6379 000016b4 ©210105B MV .L2X A4,B4 5 12734]
AMS320C6x COFF Assembler PC v5.3.0 Sat Apr 12 20:31:03 2014
Tools Copyright (c) 1996-2005 Texas Instruments Incorporated
fast.asm PAGE 117
6380 000016b8 01800028! || MVKL .S1 __divf,A3
6381
6382 000016cO ©31000A3 SPDP .S2 B4,B7:B6 5 12737]
6383 000016c4 01800068! || MVKH .S1 __divf,A3
6384
6385 000016c8 ©29705A8 MVKL .S1 0x3el112e0b, A5
6386
6387 000016cc 000C1363 CALL .S2X A3 5 12739]
6388 000016d0 026B4AAS | | MVKL .S1 0xe826d695, A4
6389
6390 000016d4 04382FAB MVKL .S2 0x3089705f, B8
6391 000016d8 ©29FOSES | | MVKH .S1 0x3el112e0b,A5
6392
6393 0000160 018B862B+ MVKL .S2 CRLIS8,B3 5 12739]

6394 000016e4 02741369 || MVKH .S1 0xe826d695, A4

6395 000016e8 028000FA || ZERO .L2 B5 5 12739]

6396

6397 00PRRl6ec ©VIZIA61 CMPLTDP .S1X B7:B6,A5:A4,A1 5 12737

6398 00RR16T0 ©29FCO6A || MVKH .S2 0x3800000, B5 5 12739]

6399

6400 0PRO16T4 041844EA MVKH .S2 0x3089705f, B8

6401

6402 00001700 8220005B [A1] MV L2 B8,B4 5 12737

6403 00001704 02141059 || MV .L1X B5,A4 5 12739]

6404 00001708 0180006A+ | | MVKH .S2 CRL9S,B3 5 12739]

6405

6406 0000170c CRL98: ; CALL OCCURS {A3} 5 12739]

6407 3FF e e e
*

6408 00RR170C ©OOOO NOP 1

6409 00001710 01803C28- MVKL .51 _Spindle,A3

6410 00001714 01800068 - MVKH .51 _Spindle,A3

6411 00001718 030C0364 LDDW .D1T1 *A3,A7:A6 ; |2746]

6412 0000171c 0006000 NOP 4

6413 00001720 ©19CCO38 DPTRUNC .L1 A7:A6,A3 ; |2746]

6414 00001724 00004000 NOP 3

6415 00001728 018C4058 ADD L1 2,A3,A3 ; |2746]

6416 0000172c 00OCO738 INTDP .L1 A3,A1:A0 ; |2746]

6417 00001730 00000000 NOP 1

6418 00001734 0200602A- MVKL .82 _Spindle+72,B4

6419 00001738 0200006A- MVKH .82 _Spindle+72,B4

6420 00RR173c ©21003E6 LDDW .D2T2 *B4,B5:B4 ; |2740]

6421 00001740 0400C338 SUBDP .L1 A7:A6,A1:A0,A9:A8 ; |2749]

6422 00001744 000000 NOP 1

6423 00001748 ©38000F8 ZERO L1 A7 5 |2740]

6424

6425 000R174c @39FF869 MVKH .S1 0x3ff00000,A7 ; |2740]

6426 00001750 ©30000F8 || ZERO L1 A6 ; |2740]

6427

6428 00001754 ©210D3BA SUBDP .L2X A7:A6,B5:B4,B5:B4 ; |2740]

6429 00RR1758 ©VOVVO NOP 1

6430 00RO175C ©O80002A! MVKL .S2 _CSe_TimeBase,B1

6431 00001760 ©180582A- MVKL .S2 _Spindle+56,B3

6432 00001764 ©500002A! MVKL .S2 _CSe_t,B1e

6433

6434 00001768 ©31000A1 SPDP .S1 A4,A7:A6 5 |2740|

AMS320C6x COFF Assembler PC v5.3.0 Sat Apr 12 20:31:03 2014

Tools Copyright (c) 1996-2005 Texas Instruments Incorporated

fast.asm PAGE 118
6435 0000176C 0000182A || MVK .S2 48,B0
6436
6437 0001770 ©600322A MVK .S2 100,B12
6438
6439 00001774 04189703 MPYDP .M2X A7:A6,B5:B4,B9:B8 ; |2740]|
6440 00001778 ©080006A! | | MVKH .S2 _CSe_TimeBase,B1
6441
6442 00001780 0180006B- MVKH .S2 _Spindle+56,B3
6443 00001784 030000FA | | ZERO .L2 B6 5 12742]
6444
6445 00001788 ©30402F7 STW .D2T2 B6,*B1 5 12742
6446 00RR178c ©500006A! || MVKH .S2 _CSe_t,B1e
6447
6448 00001790 0©30424FB ZERO .L2 B7:B6 5 12742
6449 00001794 QOOO65E3 || SuB .S2 B3,B0,B0
6450 00001798 032802F6 || STW .D2T2 B6,*B10 5 2742
6451
6452 00001720 ©30CO2F7 STW .D2T2 B6,*B3 5 2742
6453 000017a4 0630007B || ADD .L2 BO,B12,B12
6454 000017a8 0100002B! || MVKL .S2 _CS@_TimeBaseDelta,B2
6455 000017ac ©28000A8 | | MVK .S1 1,A5 ; |2752]

6456
6457 000017b0 0320C701 MPYDP .Ml A7:A6,A9:A8,A7:A6 ; |2749]

6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489

000017b4
000017b8
000017bc

000017c0O

000017c4
000017c8

000017cc
000017d0
000017d4

000017e0
000017e4
000017e8

000017ec
00001710

00001714
00001718

000017fc
00001800

00001804
00001808
0000180cC
00001810

00001814

©18000F9
©2B0O02F5
0100006A!

018802F4

©38C22F7
01000C28

000002F5
028425E1
010992F8

028822F5
0688905B
0580002A!

043402F7
0580006A!

022C0O2E7
©28000FA

02A822F6
04B422F6

028422F7
04000029
018F1059
02080274

©53C23E7

ZERO
STW
MVKH

STW

STW
MVK

STW
ZERO
SUB

STW
ADD
MVKL

STW
MVKH

LDW
ZERO

STW
STW

STW
MVKL
ADD
STW

LDDW

.L1
.D2T1
.S2

.D2T1

.D2T2
.S1

.D2T1
.S1
.L1X

.D2T1
.L2X
.S2

.D2T2
.S2

.D2T2
.L2

.D2T2
.D2T2

.D2T2
.S1
.L1X
.D1T1

.D2T2

A3 5
A5, *B12 3

[2742]
|2752]

_CS@_TimeBaseDelta,B2

AMS320C6x COFF Assembler PC v5.3.@ Sat Apr 12 20:31:03 2014

Tools Copyright (c) 1996-2005 Texas Instruments Incorporated

fast.asm

6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504

00001818
0000181c

00001820
00001824
00001828
0000182c
00001830
00001834
00001838

0000183c

04000069 !
030C0274

02200277
008022F5
©1B8105A
000C0363
038C2275
063C43E6
073CD2E4

00006000

MVKH
STW

STW
STW
MV

RET
STW
LDDW

LDW
.dwpsn
NOP

.S1
.D1T1

.D1T2
.D2T1
.L2X

.S2
.D1T1
.D2T2

.D2T1

"fast.c",2753,1

A3,*B2 5 |2742]
B7,*+B3(4) 5 |2742]
24,A2
AQ, *BO 5 |2746]
A5 5 2742
B12,A2,A2
A5, *+B2(4) 5 |2742]
4,A2,B13
_LastCoordSystemo,B11
B8, *B13 5 |2740]
_LastCoordSystemo,B11
*B11,B4 5 12743]
B5 5 |2742]
B5,*+B10(4) 5 |2742]
B9, *+B13(4) 5 |2740]
BS, *+B1(4) 5 |2742]
_CoordSystemo, A8
-8,B3,A3
A4, *A2 5 12739]
*+SP(8),B11:B10 ; |2753]
PAGE 119

_CoordSystemo, A8
A6, *A3 5 |2749]
B4, *A8 5 |2743]
Al,*+B0O(4) 5 |2746]
A14,B3 5 |2753]
B3 ; |2753]
A7,*+A3(4) 5 |2749]
*+SP(16),B13:B12 |2753]
*++SP(24),A14 ; 12753]
4

|2753]

; BRANCH OCCURS {B3} 5

Tried using a function as a “Memory Barrier” and that didn’t work either. Interestingly the
function was created but never called. Instead the code in the funtion was still inlined out of
order.

void MemoryBarrier (void)

{

// Activate last after everything is set up
Spindle.ThreadingActive = TRUE;

#define MIN RPS le-9
voilid TrigThreading(float BaseSpeedRPS)
{

register SPINDLE *S=&Spindle;

if (BaseSpeedRPS < MIN RPS) BaseSpeedRPS = MIN RPS;

S->InvBaseSpeedRPS = 1.0f/BaseSpeedRPS;
S->InvBaseSpeedRPSK1 = S->InvBaseSpeedRPS * (1.0 - S->K);

CsO_t = CSO_TimeBase CSO_TimeBaseDelta = S->LastCSTime = 0.0;
CoordSystem0 = LastCoordSystemO;

// compute where to start
S->StartPosition = (int) (S->Position) + 2;

// Initialize the Filter to the current unfiltered without any Lead
S->AdjTimeFilt = (S->Position - S->StartPosition) * S->InvBaseSpeedRPS;

// Activate last after everything is set up
MemoryBarrier () ;

This was suggested. Actually made a smaller window but still not correct

inline void force write(int *ptr, int value)
{
*(volatile int *)ptr = value;

}

#define MIN RPS le-9
void TrigThreading(float BaseSpeedRPS)
{

register SPINDLE *S=&Spindle;

if (BaseSpeedRPS < MIN RPS) BaseSpeedRPS = MIN RPS;

S->InvBaseSpeedRPS = 1.0f/BaseSpeedRPS;
S->InvBaseSpeedRPSK1 S->InvBaseSpeedRPS * (1.0 - S->K);

CSO0_t = CSO_TimeBase = CSO_TimeBaseDelta = S->LastCSTime = 0.0;
CoordSystem0 = LastCoordSystemO;

// compute where to start
S->StartPosition = (int) (S->Position) + 2;

// Initialize the Filter to the current unfiltered without any Lead
S->AdjTimeFilt = (S->Position - S->StartPosition) * S->InvBaseSpeedRPS;

// Activate last after everything is set up
force write(&Spindle.ThreadingActive, TRUE) ;

I think this will be my solution. | was worried that it might not put the WaitNextTimeSlice at the
beginning but it did (not 100% sure it always will). Although it did in-line all the code! Which
should be ok.

// WaitNextTimeSlice - wait until a thread's new time slice begins
double WaitNextTimeSlice (void)
{

register double tick=ServoTick;

while (tick==ServoTick) ;

return Time sec();

void TrigThreading(float BaseSpeedRPS)
{ register SPINDLE *S=&Spindle;
WaitNextTimeSlice () ;
if (BaseSpeedRPS < MIN RPS) BaseSpeedRPS = MIN RPS;

S->InvBaseSpeedRPS = 1.0f/BaseSpeedRPS;
S->InvBaseSpeedRPSK1 S->InvBaseSpeedRPS * (1.0 - S->K);

CSO_t = CSO_TimeBase = CSO_TimeBaseDelta = S->LastCSTime = 0.0;
CoordSystem0 = LastCoordSystemO;

// compute where to start
S->StartPosition = (int) (S->Position) + 2;

// Initialize the Filter to the current unfiltered without any Lead
S->AdjTimeFilt = (S->Position - S->StartPosition) * S->InvBaseSpeedRPS;

// Activate last after everything is set up
S->ThreadingActive = TRUE;

